False positive, False negative, Type I error, Type II error
| True | False | |
|---|---|---|
| True | Correct | Type II error |
| False | Type I error | Correct |
Binary classification
| Actual Class Positive |
Actual Class Negative |
|
|---|---|---|
| Assigned Positive | True Positive | False Positive |
| Assigned Negative | False Negative | True Negative |
Statistics
A positive result corresponds to rejecting the null hypothesis, while a negative result corresponds to failing to reject the null hypothesis; “false” means the conclusion drawn is incorrect. Thus a type I error is a false positive, and a type II error is a false negative. Wikipedia| null hypothesis( True |
null hypothesis( False |
|
|---|---|---|
| Fail to reject | Correct (True Negative) (1-, confidence level) |
Type II error (False Negative) () |
| Reject | Type I error (False Positive) ( , significance level) |
Correct (True Positive) (, power) |
댓글
댓글 쓰기