False positive, False negative, Type I error, Type II error False positive, False negative, Type I error, Type II error True False True Correct Type II error False Type I error Correct Binary classification Actual Class Positive Actual Class Negative Assigned Positive True Positive False Positive Assigned Negative False Negative True Negative Statistics A positive result corresponds to rejecting the null hypothesis, while a negative result corresponds to failing to reject the null hypothesis; “false” means the conclusion drawn is incorrect. Thus a type I error is a false positive, and a type II error is a false negative. Wikipedia null hypothesis( H 0 ) H_0) H 0 ) True null hypothesis( H 0 ) H_0) H 0 ) False Fail to reject Correct (True Negative) (1- α \alpha α , confidence level) Type II error (False Negative) ( β \beta β ) Reject Type I error (False Positive) ( α \alpha α , signif...