Vector
position vector
→r12=→rto1from2
Force vector
→F12=→Fon1by2
Scalar triple product
→A⋅(→B×→C)
- volume of parallel-piped defined by →A,→B,→C
- →A⋅(→B×→C)=(→A×→B)⋅→C=−→B⋅(→A×→C)=…
Vector triple product
BAC-CAB rule
→A×(→B×→C)=→B(→A⋅→C)−→C(→A⋅→B)
Differential Vector Operators
irrotational
∇×→A=0everywhere
solenoidal
∇⋅→A=0everywhere
any gradient has a vanishing curl and is solenoidal
∇×∇φ=0,allφ
any curl has a vanishing divergence and is irrotational
∇⋅(∇×→V)=0,allV
vector Laplacian ∇2→V or ∇⋅∇→V
∇×(∇×→V)=∇(∇⋅→V)−∇⋅∇→V=∇(∇⋅→V)−∇2→V
Laplacian for Spherical coordinate
∇2≡1r2∂∂r(r2∂∂r)+1r2sin2ϕ∂2∂θ2+1r2sinϕ∂∂ϕ(sinϕ∂∂ϕ)
Miscellaneous
f:scalar function, →V:vector function
∇⋅(f→V)=(∇f)⋅→V+f∇→V
∇×(f→V)=f(∇×→V)+(∇f)×→V
∇×(→A×→B)=→A(∇⋅→B)−→B(∇⋅→A)−(→A⋅∇)→B+(→B⋅∇)→A
∇⋅(→A×→B)=→B⋅(∇×→A)−→A⋅(∇×→B)
→A×(∇×→A)=12∇(A2)−(→A⋅∇)→A
Del in cylindrical and spherical coordinates - wiki
Vector Integration
Integration by parts
scalar function f(→r), vector function →A(→r)
f(→r) or →A(→r) vanish sufficiently strongly at infinity, i.e. integrated terms vanish at infinity∫→A(→r)⋅∇f(→r)d3r=−∫f(→r)∇⋅→A(→r)d3r
∫f(→r)∇⋅→A(→r)d3r=−∫→A(→r)⋅∇f(→r)
∫→C(→r)⋅(∇×→A(→r))d3r=∫→A(→r)⋅(∇×→C(→r))d3r
댓글
댓글 쓰기